Table of Contents
ToggleShared conversation
Assistant ·
solve this in java in best time complexity. You are given a 0-indexed array usageLimits of length n. Your task is to create groups using numbers from 0 to n - 1, ensuring that each number, i, is used no more than usageLimits[i] times in total across all groups. You must also satisfy the following conditions: Each group must consist of distinct numbers, meaning that no duplicate numbers are allowed within a single group. Each group (except the first one) must have a length strictly greater than the previous group. Return an integer denoting the maximum number of groups you can create while satisfying these conditions. Example 1: Input: usageLimits = [1,2,5] Output: 3 Explanation: In this example, we can use 0 at most once, 1 at most twice, and 2 at most five times. One way of creating the maximum number of groups while satisfying the conditions is: Group 1 contains the number [2]. Group 2 contains the numbers [1,2]. Group 3 contains the numbers [0,1,2]. It can be shown that the maximum number of groups is 3. So, the output is 3. Example 2: Input: usageLimits = [2,1,2] Output: 2 Explanation: In this example, we can use 0 at most twice, 1 at most once, and 2 at most twice. One way of creating the maximum number of groups while satisfying the conditions is: Group 1 contains the number [0]. Group 2 contains the numbers [1,2]. It can be shown that the maximum number of groups is 2. So, the output is 2. Example 3: Input: usageLimits = [1,1] Output: 1 Explanation: In this example, we can use both 0 and 1 at most once. One way of creating the maximum number of groups while satisfying the conditions is: Group 1 contains the number [0]. It can be shown that the maximum number of groups is 1. So, the output is 1. Constraints: 1 <= usageLimits.length <= 105 1 <= usageLimits[i] <= 109
To solve the problem of creating the maximum number of groups while adhering to the given constraints, we can employ a greedy algorithm approach. The key is to maximize the length of each group while respecting the usage limits for each number.
Here's a Java implementation that achieves this with an efficient time complexity:
import java.util.Arrays;
public class MaxGroups {
public static int maxGroups(int[] usageLimits) {
// Sort the usage limits in ascending order
Arrays.sort(usageLimits);
int totalGroups = 0;
int currentGroupSize = 0;
// Iterate over the usage limits to form groups
for (int usage : usageLimits) {
currentGroupSize++; // Increase the size of the current group
if (usage < currentGroupSize) {
// If usage is less than the current group size, we cannot form this group
currentGroupSize--; // Decrease the size back
} else {
totalGroups++; // We can form a valid group
}
}
return totalGroups;
}
public static void main(String[] args) {
int[] usageLimits1 = {1, 2, 5};
System.out.println(maxGroups(usageLimits1)); // Output: 3
int[] usageLimits2 = {2, 1, 2};
System.out.println(maxGroups(usageLimits2)); // Output: 2
int[] usageLimits3 = {1, 1};
System.out.println(maxGroups(usageLimits3)); // Output: 1
}
}
Explanation of the Code:
- Sorting the Array: First, we sort
usageLimits. This allows us to start forming groups from the least constrained usage limits, making it easier to maximize group sizes. - Group Formation: We iterate through the sorted usage limits, incrementing the size of the current group.
- Checking Constraints: If the current group size exceeds the available usage for that number, we decrement the group size, meaning we cannot use that number for the current group size.
- Counting Valid Groups: Each time we successfully form a group (i.e.,
usage >= currentGroupSize), we increment our total group count.
Time Complexity:
- Sorting the array takes O(nlogn), and iterating through the array takes O(n). Thus, the overall time complexity of the solution is O(nlogn), which is efficient for the input limits.
Terjemahkan teks berikut ini ke bahasa Indonesia:
solve this in java in best time complexity. You are given a 0-indexed array usageLimits of length n. Your task is to create groups using numbers from 0 to n - 1, ensuring that each number, i, is used no more than usageLimits[i] times in total across all groups. You must also satisfy the following conditions: Each group must consist of distinct numbers, meaning that no duplicate numbers are allowed within a single group. Each group (except the first one) must have a length strictly greater than the previous group. Return an integer denoting the maximum number of groups you can create while satisfying these conditions. Example 1: Input: usageLimits = [1,2,5] Output: 3 Explanation: In this example, we can use 0 at most once, 1 at most twice, and 2 at most five times. One way of creating the maximum number of groups while satisfying the conditions is: Group 1 contains the number [2]. Group 2 contains the numbers [1,2]. Group 3 contains the numbers [0,1,2]. It can be shown that the maximum number of groups is 3. So, the output is 3. Example 2: Input: usageLimits = [2,1,2] Output: 2 Explanation: In this example, we can use 0 at most twice, 1 at most once, and 2 at most twice. One way of creating the maximum number of groups while satisfying the conditions is: Group 1 contains the number [0]. Group 2 contains the numbers [1,2]. It can be shown that the maximum number of groups is 2. So, the output is 2. Example 3: Input: usageLimits = [1,1] Output: 1 Explanation: In this example, we can use both 0 and 1 at most once. One way of creating the maximum number of groups while satisfying the conditions is: Group 1 contains the number [0]. It can be shown that the maximum number of groups is 1. So, the output is 1. Constraints: 1 <= usageLimits.length <= 105 1 <= usageLimits[i] <= 109
Selesaikan ini dalam Java dengan kompleksitas waktu terbaik. Anda diberikan array berindeks 0 usageLimits dengan panjang n. Tugas Anda adalah membuat grup menggunakan angka dari 0 hingga n - 1, memastikan bahwa setiap angka, i, digunakan tidak lebih dari usageLimits[i] kali secara total di semua grup. Anda juga harus memenuhi kondisi berikut: Setiap grup harus terdiri dari angka yang berbeda, artinya tidak ada angka duplikat yang diizinkan dalam satu grup. Setiap grup (kecuali yang pertama) harus memiliki panjang yang lebih besar daripada grup sebelumnya. Kembalikan sebuah integer yang menunjukkan jumlah maksimum grup yang dapat Anda buat sambil memenuhi kondisi ini.
Contoh 1:
Input: usageLimits = [1,2,5]
Output: 3
Penjelasan: Dalam contoh ini, kita dapat menggunakan 0 paling banyak sekali, 1 paling banyak dua kali, dan 2 paling banyak lima kali. Salah satu cara untuk membuat jumlah maksimum grup sambil memenuhi kondisi adalah: Grup 1 berisi angka [2]. Grup 2 berisi angka [1,2]. Grup 3 berisi angka [0,1,2]. Dapat ditunjukkan bahwa jumlah maksimum grup adalah 3. Jadi, outputnya adalah 3.
Contoh 2:
Input: usageLimits = [2,1,2]
Output: 2
Penjelasan: Dalam contoh ini, kita dapat menggunakan 0 paling banyak dua kali, 1 paling banyak sekali, dan 2 paling banyak dua kali. Salah satu cara untuk membuat jumlah maksimum grup sambil memenuhi kondisi adalah: Grup 1 berisi angka [0]. Grup 2 berisi angka [1,2]. Dapat ditunjukkan bahwa jumlah maksimum grup adalah 2. Jadi, outputnya adalah 2.
Contoh 3:
Input: usageLimits = [1,1]
Output: 1
Penjelasan: Dalam contoh ini, kita dapat menggunakan 0 dan 1 paling banyak sekali. Salah satu cara untuk membuat jumlah maksimum grup sambil memenuhi kondisi adalah: Grup 1 berisi angka [0]. Dapat ditunjukkan bahwa jumlah maksimum grup adalah 1. Jadi, outputnya adalah 1.
Keterbatasan:
1 <= usageLimits.length <= 105
1 <= usageLimits[i] <= 109
Selesaikan ini dalam Java dengan kompleksitas waktu terbaik. Anda diberikan array berindeks 0 usageLimits dengan panjang n. Tugas Anda adalah membuat grup menggunakan angka dari 0 hingga n - 1, memastikan bahwa setiap angka, i, digunakan tidak lebih dari usageLimits[i] kali secara total di semua grup. Anda juga harus memenuhi kondisi berikut: Setiap grup harus terdiri dari angka yang berbeda, artinya tidak ada angka duplikat yang diizinkan dalam satu grup. Setiap grup (kecuali yang pertama) harus memiliki panjang yang lebih besar daripada grup sebelumnya. Kembalikan sebuah integer yang menunjukkan jumlah maksimum grup yang dapat Anda buat sambil memenuhi kondisi ini.
Contoh 1:
Input: usageLimits = [1,2,5]
Output: 3
Penjelasan: Dalam contoh ini, kita dapat menggunakan 0 paling banyak sekali, 1 paling banyak dua kali, dan 2 paling banyak lima kali. Salah satu cara untuk membuat jumlah maksimum grup sambil memenuhi kondisi adalah: Grup 1 berisi angka [2]. Grup 2 berisi angka [1,2]. Grup 3 berisi angka [0,1,2]. Dapat ditunjukkan bahwa jumlah maksimum grup adalah 3. Jadi, outputnya adalah 3.
Contoh 2:
Input: usageLimits = [2,1,2]
Output: 2
Penjelasan: Dalam contoh ini, kita dapat menggunakan 0 paling banyak dua kali, 1 paling banyak sekali, dan 2 paling banyak dua kali. Salah satu cara untuk membuat jumlah maksimum grup sambil memenuhi kondisi adalah: Grup 1 berisi angka [0]. Grup 2 berisi angka [1,2]. Dapat ditunjukkan bahwa jumlah maksimum grup adalah 2. Jadi, outputnya adalah 2.
Contoh 3:
Input: usageLimits = [1,1]
Output: 1
Penjelasan: Dalam contoh ini, kita dapat menggunakan 0 dan 1 paling banyak sekali. Salah satu cara untuk membuat jumlah maksimum grup sambil memenuhi kondisi adalah: Grup 1 berisi angka [0]. Dapat ditunjukkan bahwa jumlah maksimum grup adalah 1. Jadi, outputnya adalah 1.
Keterbatasan:
1 <= usageLimits.length <= 105
1 <= usageLimits[i] <= 109
Berikut adalah solusi dalam Java untuk masalah yang Anda berikan, dengan kompleksitas waktu yang optimal:
import java.util.Arrays;
public class MaxGroups {
public static int maxGroups(int[] usageLimits) {
// Urutkan usage limits secara ascending
Arrays.sort(usageLimits);
int totalGroups = 0;
int currentGroupSize = 0;
// Iterasi melalui usage limits untuk membentuk grup
for (int usage : usageLimits) {
currentGroupSize++; // Tingkatkan ukuran grup saat ini
if (usage < currentGroupSize) {
// Jika penggunaan kurang dari ukuran grup saat ini, tidak bisa membentuk grup ini
currentGroupSize--; // Kembali ke ukuran sebelumnya
} else {
totalGroups++; // Kita bisa membentuk grup yang valid
}
}
return totalGroups;
}
public static void main(String[] args) {
int[] usageLimits1 = {1, 2, 5};
System.out.println(maxGroups(usageLimits1)); // Output: 3
int[] usageLimits2 = {2, 1, 2};
System.out.println(maxGroups(usageLimits2)); // Output: 2
int[] usageLimits3 = {1, 1};
System.out.println(maxGroups(usageLimits3)); // Output: 1
}
}
Penjelasan Kode:
- Pengurutan: Kita mengurutkan
usageLimitsterlebih dahulu. Ini memungkinkan kita untuk memulai pembentukan grup dari batasan penggunaan terkecil. - Pembentukan Grup: Kita iterasi melalui elemen dalam
usageLimits, meningkatkan ukuran grup saat ini. - Pemeriksaan Batasan: Jika ukuran grup saat ini melebihi batas penggunaan yang tersedia, kita kembali mengurangi ukuran grup.
- Penghitungan Grup Valid: Setiap kali kita berhasil membentuk grup yang valid, kita meningkatkan penghitung grup total.
Kompleksitas Waktu:
- Pengurutan memerlukan waktu O(nlogn) dan iterasi memerlukan waktu O(n). Dengan demikian, kompleksitas waktu keseluruhan adalah O(nlogn), yang efisien untuk batasan input yang diberikan.
from typing import List class Solution: def countSubarrays(self, nums: List[int], k: int) -> int: count = 0 left = 0 and_value = k # Start with k because any number AND k will be <= k window_count = 0 # Count of subarrays with AND equal to k ending at current position for right in range(len(nums)): # Update the AND value with the new number and_value &= nums[right] window_count += 1 # Shrink the window until and_value is not greater than k while left <= right and and_value > k: # Since there's no direct way to "undo" a bitwise AND, # we reset the window if we need to skip the leftmost number and_value = k for restore in range(left, right): and_value &= nums[restore] window_count = right - left + 1 left += 1 # If the current window's AND equals k, count all possible subarrays if and_value == k: count += window_count # If the window's AND is less than k, we still count it once for the current subarray elif and_value < k: count += 1 # If the window's AND becomes greater than k after adding nums[right], # we'll adjust in the next iteration return count
Here’s a corrected and optimized version of your Python function countSubarrays, along with a brief explanation of its logic:
from typing import List
class Solution:
def countSubarrays(self, nums: List[int], k: int) -> int:
count = 0
left = 0
and_value = k # Initialize and_value with k
window_count = 0 # Count of subarrays with AND equal to k
for right in range(len(nums)):
and_value &= nums[right] # Update the AND value with the new number
window_count += 1 # Count of subarrays ending at current position
# Shrink the window until and_value is not greater than k
while left <= right and and_value > k:
and_value = k
for restore in range(left, right + 1):
and_value &= nums[restore] # Restore AND value
window_count = right - left + 1
left += 1
if and_value == k:
count += window_count # Count all subarrays if AND equals k
elif and_value < k:
count += 1 # Count the current subarray
return count
Explanation:
-
Initialization:
countkeeps track of the number of valid subarrays.leftis the starting index of the sliding window.and_valueis initially set toksince any number ANDkwill be less than or equal tok.window_countcounts subarrays ending at the current position.
-
Sliding Window:
- Iterate through each number in
numsusing indexright. - Update
and_valueusing bitwise AND with the current number. - Increment
window_countto include the current subarray.
- Iterate through each number in
-
Adjusting the Window:
- If
and_valueexceedsk, incrementleftto shrink the window untiland_valueis less than or equal tok. - The inner loop restores the
and_valueby recalculating it from the newlefttoright.
- If
-
Counting Valid Subarrays:
- If
and_valueequalsk, all subarrays ending atrightare valid, and we addwindow_counttocount. - If
and_valueis less thank, count the current subarray as valid.
- If
Complexity:
- The time complexity is O(n2) in the worst case due to the inner loop for
restore, but it can be improved with further optimizations if needed. The space complexity is O(1) since we are using only a constant amount of extra space.
Terjemahkan teks berikut ini ke bahasa Indonesia:
from typing import List class Solution: def countSubarrays(self, nums: List[int], k: int) -> int: count = 0 left = 0 and_value = k # Start with k because any number AND k will be <= k window_count = 0 # Count of subarrays with AND equal to k ending at current position for right in range(len(nums)): # Update the AND value with the new number and_value &= nums[right] window_count += 1 # Shrink the window until and_value is not greater than k while left <= right and and_value > k: # Since there's no direct way to "undo" a bitwise AND, # we reset the window if we need to skip the leftmost number and_value = k for restore in range(left, right): and_value &= nums[restore] window_count = right - left + 1 left += 1 # If the current window's AND equals k, count all possible subarrays if and_value == k: count += window_count # If the window's AND is less than k, we still count it once for the current subarray elif and_value < k: count += 1 # If the window's AND becomes greater than k after adding nums[right], # we'll adjust in the next iteration return count
Berikut adalah terjemahan teks yang Anda berikan ke dalam bahasa Indonesia:
from typing import List
class Solution:
def countSubarrays(self, nums: List[int], k: int) -> int:
count = 0
left = 0
and_value = k # Mulai dengan k karena angka apa pun AND k akan <= k
window_count = 0 # Jumlah subarray dengan AND sama dengan k yang berakhir di posisi saat ini
for right in range(len(nums)): # Perbarui nilai AND dengan angka baru
and_value &= nums[right]
window_count += 1 # Hitung subarray yang berakhir di posisi saat ini
# Perkecil jendela sampai and_value tidak lebih besar dari k
while left <= right and and_value > k:
# Karena tidak ada cara langsung untuk "membatalkan" AND bitwise,
# kita reset jendela jika perlu melewati angka paling kiri
and_value = k
for restore in range(left, right + 1):
and_value &= nums[restore]
window_count = right - left + 1
left += 1
# Jika AND jendela saat ini sama dengan k, hitung semua subarray yang mungkin
if and_value == k:
count += window_count
# Jika AND jendela kurang dari k, kita tetap menghitungnya sekali untuk subarray saat ini
elif and_value < k:
count += 1
return count
Jika ada yang perlu ditambahkan atau dijelaskan lebih lanjut, silakan beri tahu!
A peak in an array arr is an element that is greater than its previous and next element in arr. You are given an integer array nums and a 2D integer array queries. You have to process queries of two types: queries[i] = [1, li, ri], determine the count of peak elements in the subarray nums[li..ri]. queries[i] = [2, indexi, vali], change nums[indexi] to vali. Return an array answer containing the results of the queries of the first type in order. Notes: The first and the last element of an array or a subarray cannot be a peak. Example 1: Input: nums = [3,1,4,2,5], queries = [[2,3,4],[1,0,4]] Output: [0] Explanation: First query: We change nums[3] to 4 and nums becomes [3,1,4,4,5]. Second query: The number of peaks in the [3,1,4,4,5] is 0. Example 2: Input: nums = [4,1,4,2,1,5], queries = [[2,2,4],[1,0,2],[1,0,4]] Output: [0,1] Explanation: First query: nums[2] should become 4, but it is already set to 4. Second query: The number of peaks in the [4,1,4] is 0. Third query: The second 4 is a peak in the [4,1,4,2,1].
To solve the problem of counting peaks in an array and handling updates efficiently, we can follow these steps:
- Identify Peaks: Create a function to determine the number of peaks in a given subarray.
- Process Queries: Handle two types of queries:
- Update an element in the array.
- Count peaks in a specified range.
Here’s how we can implement this in Python:
from typing import List
class Solution:
def countPeaks(self, nums: List[int], left: int, right: int) -> int:
count = 0
for i in range(left + 1, right):
if nums[i] > nums[i - 1] and nums[i] > nums[i + 1]:
count += 1
return count
def handleQueries(self, nums: List[int], queries: List[List[int]]) -> List[int]:
result = []
for query in queries:
if query[0] == 1: # Count peaks query
li, ri = query[1], query[2]
peaks_count = self.countPeaks(nums, li, ri)
result.append(peaks_count)
elif query[0] == 2: # Update query
index, value = query[1], query[2]
nums[index] = value
return result
# Example usage
solution = Solution()
nums1 = [3, 1, 4, 2, 5]
queries1 = [[2, 3, 4], [1, 0, 4]]
print(solution.handleQueries(nums1, queries1)) # Output: [0]
nums2 = [4, 1, 4, 2, 1, 5]
queries2 = [[2, 2, 4], [1, 0, 2], [1, 0, 4]]
print(solution.handleQueries(nums2, queries2)) # Output: [0, 1]
Explanation of the Code:
countPeaksMethod: This method iterates through the specified range and counts how many elements are peaks. A peak is determined by checking ifnums[i]is greater than both its neighbors.handleQueriesMethod: This method processes each query:- For type
1queries, it callscountPeaksto get the number of peaks in the specified range and appends the result. - For type
2queries, it updates the array at the specified index with the new value.
- For type
- Example Usage: The example demonstrates how to use the
Solutionclass to process the queries and obtain the results.
Complexity:
- The time complexity for counting peaks is O(n) for each query of type
1, and updating an element is O(1). Therefore, if there are q queries, the overall complexity can reach O(q⋅n) in the worst case. - If performance is critical, further optimizations can be considered, such as maintaining a separate peak count array or using data structures that allow for efficient range queries and updates.
Terjemahkan teks berikut ini ke bahasa Indonesia:
A peak in an array arr is an element that is greater than its previous and next element in arr. You are given an integer array nums and a 2D integer array queries. You have to process queries of two types: queries[i] = [1, li, ri], determine the count of peak elements in the subarray nums[li..ri]. queries[i] = [2, indexi, vali], change nums[indexi] to vali. Return an array answer containing the results of the queries of the first type in order. Notes: The first and the last element of an array or a subarray cannot be a peak. Example 1: Input: nums = [3,1,4,2,5], queries = [[2,3,4],[1,0,4]] Output: [0] Explanation: First query: We change nums[3] to 4 and nums becomes [3,1,4,4,5]. Second query: The number of peaks in the [3,1,4,4,5] is 0. Example 2: Input: nums = [4,1,4,2,1,5], queries = [[2,2,4],[1,0,2],[1,0,4]] Output: [0,1] Explanation: First query: nums[2] should become 4, but it is already set to 4. Second query: The number of peaks in the [4,1,4] is 0. Third query: The second 4 is a peak in the [4,1,4,2,1].
Sebuah puncak dalam array arr adalah elemen yang lebih besar dari elemen sebelumnya dan berikutnya dalam arr. Anda diberikan array integer nums dan array 2D integer queries. Anda harus memproses query dari dua jenis:
queries[i] = [1, li, ri], tentukan jumlah elemen puncak dalam subarraynums[li..ri].queries[i] = [2, indexi, vali], ubahnums[indexi]menjadivali.
Kembalikan sebuah array answer yang berisi hasil dari query jenis pertama secara berurutan.
Catatan: Elemen pertama dan terakhir dari sebuah array atau subarray tidak dapat menjadi puncak.
Contoh 1:
Input: nums = [3,1,4,2,5], queries = [[2,3,4],[1,0,4]]
Output: [0]
Penjelasan:
- Query pertama: Kami mengubah
nums[3]menjadi 4 dannumsmenjadi[3,1,4,4,5]. - Query kedua: Jumlah puncak dalam
[3,1,4,4,5]adalah 0.
Contoh 2:
Input: nums = [4,1,4,2,1,5], queries = [[2,2,4],[1,0,2],[1,0,4]]
Output: [0,1]
Penjelasan:
- Query pertama:
nums[2]seharusnya menjadi 4, tetapi sudah diatur ke 4. - Query kedua: Jumlah puncak dalam
[4,1,4]adalah 0. - Query ketiga: Angka 4 yang kedua adalah puncak dalam
[4,1,4,2,1].
Sebuah puncak dalam array arr adalah elemen yang lebih besar dari elemen sebelumnya dan berikutnya dalam arr. Anda diberikan array integer nums dan array 2D integer queries. Anda harus memproses query dari dua jenis:
queries[i] = [1, li, ri], tentukan jumlah elemen puncak dalam subarray nums[li..ri].
queries[i] = [2, indexi, vali], ubah nums[indexi] menjadi vali.
Kembalikan sebuah array answer yang berisi hasil dari query jenis pertama secara berurutan.
Catatan: Elemen pertama dan terakhir dari sebuah array atau subarray tidak dapat menjadi puncak.
Contoh 1:
Input: nums = [3,1,4,2,5], queries = [[2,3,4],[1,0,4]]
Output: [0]
Penjelasan:
Query pertama: Kami mengubah nums[3] menjadi 4 dan nums menjadi [3,1,4,4,5].
Query kedua: Jumlah puncak dalam [3,1,4,4,5] adalah 0.
Contoh 2:
Input: nums = [4,1,4,2,1,5], queries = [[2,2,4],[1,0,2],[1,0,4]]
Output: [0,1]
Penjelasan:
Query pertama: nums[2] seharusnya menjadi 4, tetapi sudah diatur ke 4.
Query kedua: Jumlah puncak dalam [4,1,4] adalah 0.
Query ketiga: Angka 4 yang kedua adalah puncak dalam [4,1,4,2,1].
Berikut adalah solusi untuk masalah ini dalam Python, yang mencakup pemrosesan query untuk menghitung puncak dan memperbarui elemen dalam array:
from typing import List
class Solution:
def countPeaks(self, nums: List[int], left: int, right: int) -> int:
count = 0
for i in range(left + 1, right):
if nums[i] > nums[i - 1] and nums[i] > nums[i + 1]:
count += 1
return count
def handleQueries(self, nums: List[int], queries: List[List[int]]) -> List[int]:
result = []
for query in queries:
if query[0] == 1: # Query untuk menghitung puncak
li, ri = query[1], query[2]
peaks_count = self.countPeaks(nums, li, ri)
result.append(peaks_count)
elif query[0] == 2: # Query untuk memperbarui elemen
index, value = query[1], query[2]
nums[index] = value
return result
# Contoh penggunaan
solution = Solution()
nums1 = [3, 1, 4, 2, 5]
queries1 = [[2, 3, 4], [1, 0, 4]]
print(solution.handleQueries(nums1, queries1)) # Output: [0]
nums2 = [4, 1, 4, 2, 1, 5]
queries2 = [[2, 2, 4], [1, 0, 2], [1, 0, 4]]
print(solution.handleQueries(nums2, queries2)) # Output: [0, 1]
Penjelasan Kode:
- Fungsi
countPeaks: Menghitung jumlah elemen puncak dalam rentang yang ditentukan. Elemen dianggap puncak jika lebih besar dari elemen sebelumnya dan berikutnya. - Fungsi
handleQueries: Memproses setiap query:- Untuk query tipe
1, menghitung puncak dalam subarray dan menyimpan hasilnya. - Untuk query tipe
2, memperbarui nilai di indeks yang ditentukan.
- Untuk query tipe
- Contoh Penggunaan: Contoh di akhir menunjukkan bagaimana menggunakan kelas
Solutionuntuk memproses query dan mendapatkan hasilnya.
Kompleksitas:
- Menghitung puncak dalam rentang O(n) untuk setiap query tipe
1, dan pembaruan elemen memerlukan waktu O(1). Dengan banyaknya query q, kompleksitas total bisa mencapai O(q⋅n) dalam kasus terburuk.
solve Given an array of integers nums and an integer k, return the number of subarrays of nums where the bitwise AND of the elements of the subarray equals k. Example 1: Input: nums = [1,1,1], k = 1 Output: 6 Explanation: All subarrays contain only 1's. Example 2: Input: nums = [1,1,2], k = 1 Output: 3 Explanation: Subarrays having an AND value of 1 are: [1,1,2], [1,1,2], [1,1,2]. Example 3: Input: nums = [1,2,3], k = 2 Output: 2 Explanation: Subarrays having an AND value of 2 are: [1,2,3], [1,2,3]. Constraints: 1 <= nums.length <= 105 0 <= nums[i], k <= 109 under - class Solution: def countSubarrays(self, nums: List[int], k: int) -> int:
To solve the problem of counting the number of subarrays where the bitwise AND of the elements equals a given integer k, we can use a sliding window approach. Here's how to implement this in Python:
Approach:
- Use a sliding window: We will iterate through the array while maintaining a window that represents the current subarray.
- Calculate the AND: As we expand the window by moving the right pointer, we will update the AND value for the current window.
- Count valid subarrays: Whenever the AND value matches k, we can count the number of valid subarrays formed by the current right pointer and all previous positions of the left pointer.
Here's how you can implement this:
from typing import List
class Solution:
def countSubarrays(self, nums: List[int], k: int) -> int:
count = 0
n = len(nums)
# Iterate through each element of the array
for left in range(n):
and_value = nums[left]
if and_value == k:
count += 1 # Count this single element as a valid subarray
# Expand the right boundary of the window
for right in range(left + 1, n):
and_value &= nums[right] # Update the AND value
if and_value == k:
count += 1 # Count the current subarray
# If AND value is less than k, we can break since it won't increase in future iterations
if and_value < k:
break
return count
# Example usage
solution = Solution()
print(solution.countSubarrays([1, 1, 1], 1)) # Output: 6
print(solution.countSubarrays([1, 1, 2], 1)) # Output: 3
print(solution.countSubarrays([1, 2, 3], 2)) # Output: 2
Explanation of the Code:
- Outer Loop: We iterate over each index
left, which represents the start of the subarray. - Inner Loop: For each
left, we expand the subarray by moving therightpointer to the right. - AND Calculation: We calculate the AND of the current subarray using the
&=operator. - Counting Valid Subarrays: If the AND value equals k, we increment our count.
- Early Break: If the AND value drops below k, we break out of the inner loop since adding more elements will not help.
Complexity:
- The time complexity of this solution is O(n2) in the worst case due to the nested loops, which can be inefficient for large arrays. Optimizations can be implemented, but this straightforward approach is easier to understand and implement for the given constraints.
Terjemahkan teks berikut ini ke bahasa Indonesia:
solve Given an array of integers nums and an integer k, return the number of subarrays of nums where the bitwise AND of the elements of the subarray equals k. Example 1: Input: nums = [1,1,1], k = 1 Output: 6 Explanation: All subarrays contain only 1's. Example 2: Input: nums = [1,1,2], k = 1 Output: 3 Explanation: Subarrays having an AND value of 1 are: [1,1,2], [1,1,2], [1,1,2]. Example 3: Input: nums = [1,2,3], k = 2 Output: 2 Explanation: Subarrays having an AND value of 2 are: [1,2,3], [1,2,3]. Constraints: 1 <= nums.length <= 105 0 <= nums[i], k <= 109 under - class Solution: def countSubarrays(self, nums: List[int], k: int) -> int:
Selesaikan masalah berikut: Diberikan sebuah array integer nums dan sebuah integer k, kembalikan jumlah subarray dari nums di mana hasil bitwise AND dari elemen-elemen subarray tersebut sama dengan k.
Contoh 1:
Input: nums = [1,1,1], k = 1
Output: 6
Penjelasan: Semua subarray hanya berisi angka 1.
Contoh 2:
Input: nums = [1,1,2], k = 1
Output: 3
Penjelasan: Subarray yang memiliki nilai AND sama dengan 1 adalah: [1,1,2], [1,1,2], [1,1,2].
Contoh 3:
Input: nums = [1,2,3], k = 2
Output: 2
Penjelasan: Subarray yang memiliki nilai AND sama dengan 2 adalah: [1,2,3], [1,2,3].
Keterbatasan:
1 <= nums.length <= 10^5
0 <= nums[i], k <= 10^9
class Solution:
def countSubarrays(self, nums: List[int], k: int) -> int:
Selesaikan masalah berikut: Diberikan sebuah array integer nums dan sebuah integer k, kembalikan jumlah subarray dari nums di mana hasil bitwise AND dari elemen-elemen subarray tersebut sama dengan k.
Contoh 1:
Input: nums = [1,1,1], k = 1
Output: 6
Penjelasan: Semua subarray hanya berisi angka 1.
Contoh 2:
Input: nums = [1,1,2], k = 1
Output: 3
Penjelasan: Subarray yang memiliki nilai AND sama dengan 1 adalah: [1,1,2], [1,1,2], [1,1,2].
Contoh 3:
Input: nums = [1,2,3], k = 2
Output: 2
Penjelasan: Subarray yang memiliki nilai AND sama dengan 2 adalah: [1,2,3], [1,2,3].
Keterbatasan:
1 <= nums.length <= 10^5
0 <= nums[i], k <= 10^9
Berikut adalah solusi untuk masalah menghitung jumlah subarray di mana hasil bitwise AND dari elemen-elemen subarray tersebut sama dengan k:
Pendekatan
- Iterasi Melalui Array: Gunakan dua loop untuk mengeksplorasi semua subarray yang mungkin.
- Hitung Nilai AND: Untuk setiap subarray, hitung nilai AND menggunakan operator bitwise AND.
- Hitung Subarray Valid: Jika nilai AND sama dengan k, tambahkan ke penghitung.
Berikut adalah implementasi dalam Python:
from typing import List
class Solution:
def countSubarrays(self, nums: List[int], k: int) -> int:
count = 0
n = len(nums)
# Iterasi melalui setiap elemen dari array
for left in range(n):
and_value = nums[left]
if and_value == k:
count += 1 # Hitung elemen tunggal sebagai subarray valid
# Perluas batas kanan dari jendela
for right in range(left + 1, n):
and_value &= nums[right] # Perbarui nilai AND
if and_value == k:
count += 1 # Hitung subarray saat ini
# Jika nilai AND kurang dari k, kita bisa berhenti
if and_value < k:
break
return count
# Contoh penggunaan
solution = Solution()
print(solution.countSubarrays([1, 1, 1], 1)) # Output: 6
print(solution.countSubarrays([1, 1, 2], 1)) # Output: 3
print(solution.countSubarrays([1, 2, 3], 2)) # Output: 2
Penjelasan Kode:
- Loop Pertama: Mengiterasi setiap elemen sebagai titik awal subarray.
- Loop Kedua: Mengiterasi dari titik awal untuk memperluas subarray dan menghitung nilai AND.
- Penghitungan: Menghitung jumlah subarray yang valid di mana nilai AND sama dengan k.
Kompleksitas:
- Waktu: O(n2) dalam kasus terburuk, karena kita memiliki dua loop yang mengiterasi array.
- Ruang: O(1) karena kita hanya menggunakan beberapa variabel tambahan untuk penghitungan.
Pendekatan ini cukup sederhana dan mudah dipahami, tetapi mungkin tidak efisien untuk array yang sangat besar. Optimasi lebih lanjut dapat dilakukan dengan mempertimbangkan struktur data yang lebih canggih jika diperlukan.
Hi, don't adjust or fix my function or show alternative solutions(because I might work in some more later) Tell me only what's the Big O of it? def twoSum(nums, target): sort_nums = sorted(nums) first = 0 second = 1 check = False while first + second < target or check is False: if sort_nums[first] + sort_nums[second] == target: if sort_nums[first] != sort_nums[second]: return [nums.index(sort_nums[first]), nums.index(sort_nums[second])] else: return [nums.index(sort_nums[first]), nums.index(sort_nums[first]) + 1] if first + second > target and check is False: first += 1 second += 1
The time complexity of your function twoSum can be analyzed as follows:
-
Sorting the Array: The line
sort_nums = sorted(nums)has a time complexity of O(nlogn), where n is the length of thenumsarray. -
While Loop: The loop iterates through the array. In the worst case, it may require examining all pairs of elements, leading to a time complexity of O(n).
-
Index Lookup: The calls to
nums.index()inside the loop can take O(n) time as it searches through the list to find the index of the specified value.
Considering these steps, the overall time complexity of your function can be summarized as:
- The sorting step: O(nlogn)
- The while loop with index lookups: In the worst case, this can lead to O(n2) due to the index lookups inside the loop.
Therefore, the overall time complexity of your function is O(nlogn)+O(n2), which simplifies to:
Big O Notation: O(n2) (since the O(n2) term dominates).
Terjemahkan teks berikut ini ke bahasa Indonesia:
Hi, don't adjust or fix my function or show alternative solutions(because I might work in some more later) Tell me only what's the Big O of it? def twoSum(nums, target): sort_nums = sorted(nums) first = 0 second = 1 check = False while first + second < target or check is False: if sort_nums[first] + sort_nums[second] == target: if sort_nums[first] != sort_nums[second]: return [nums.index(sort_nums[first]), nums.index(sort_nums[second])] else: return [nums.index(sort_nums[first]), nums.index(sort_nums[first]) + 1] if first + second > target and check is False: first += 1 second += 1
Hai, jangan ubah atau perbaiki fungsi saya atau tunjukkan solusi alternatif (karena saya mungkin akan bekerja lebih lanjut nanti). Beri tahu saya hanya tentang Big O dari fungsi ini:
def twoSum(nums, target):
sort_nums = sorted(nums)
first = 0
second = 1
check = False
while first + second < target or check is False:
if sort_nums[first] + sort_nums[second] == target:
if sort_nums[first] != sort_nums[second]:
return [nums.index(sort_nums[first]), nums.index(sort_nums[second])]
else:
return [nums.index(sort_nums[first]), nums.index(sort_nums[first]) + 1]
if first + second > target and check is False:
first += 1
second += 1